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[1] Impact of climate change on streamflow in the Upper Mississippi River Basin is
evaluated by use of a regional climate model (RCM) coupled with a hydrologic model,
Soil and Water Assessment Tool (SWAT). The RCM we used resolves, at least partially,
some fine-scale dynamical processes that are important contributors to precipitation in
this region and that are not well simulated by global models. The SWAT model was
calibrated and validated against measured streamflow data using observed weather data
and inputs from the U.S. Environmental Protection Agency Better Assessment Science
Integrating Point and Nonpoint Sources (BASINS) geographic information systems/
database system. Combined performance of SWAT and RCM was examined using
observed weather data as lateral boundary conditions in the RCM. The SWAT and RCM
performed well, especially on an annual basis. Potential impacts of climate change on
water yield and other hydrologic budget components were then quantified by driving
SWAT with current and future scenario climates. Twenty-one percent increase in future
precipitation simulated by the RCM produced 18% increase in snowfall, 51% increase in
surface runoff, and 43% increase in groundwater recharge, resulting in 50% net increase in
total water yield in the Upper Mississippi River Basin on an annual basis. Uncertainty
analysis showed that the simulated change in streamflow substantially exceeded model
biases of the combined modeling system (with largest bias of 18%). While this does not
necessarily give us high confidence in the actual climate change that will occur, it does
demonstrate that the climate change ““signal’ stands out from the climate modeling (global

plus regional) and impact assessment modeling (SWAT) “noise.””  INDEX TERMS: 1655
Global Change: Water cycles (1836); 1860 Hydrology: Runoff and streamflow; 1866 Hydrology: Soil
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1. Introduction

[2] Streamflow characteristics, both mean and interan-
nual variability, of the Upper Mississippi River Basin
(UMRB) have far-reaching implications for the central
United States. Following closely on the heels of the
massive drought of 1988 in this region, which stranded
barges below St. Louis, Missouri [Glantz, 1988], the Great
Flood of 1993 created an $18 billion impact [Changnon,
1996]. Analysis of this event exposed a profound range of
implications, including environmental effects, economic
effects, impacts on government entities, social impacts,
and impact on a wider range of public policies [Changnon,
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1996]. On the basis of a substantial amount of scientific
analysis and retrospective diagnosis of decision-maker
actions before, during and after this event, the summary
of Changnon [1996] concluded with seven ‘lessons
learned” and some ‘“unresolved key issues,” among them
being [Changnon, 1996, p. 318] “...a great need to
develop more sophisticate river basin models that allow
drastically improved flood forecasts.”

[3] We have examined this need for more sophisticated
modeling procedures in the context of climate change to
expose the strengths and weaknesses of linking global
and regional climate models to a streamflow model to
calculate streamflows consistent with a future climate
scenario.

[4] Future scenario climates for mid to end of the twenty-
first century as simulated by global climate models show
generally a warming over the United States. Large uncer-
tainties accompany global model projections of future
changes in global mean precipitation, but increase on an
annual basis seems to be most likely. Estimates of inter-
model consistency in downscaled precipitation from global
climate models [Intergovernmental Panel on Climate
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Change (IPCC), 2001a] for the central United States show a
small increase in December—January—February but lack of
consistency on the sign of change or possibly a small
decrease for June—July—August.

[s] Regional climates consistent with global changes are
created by downscaling global climate model (GCM) results
either by statistical or by dynamical (regional climate model
(RCM)) methods. Numerous studies based on statistical
methods for exploring impact of climate change at the
watershed scale are summarized in the latest IPCC impacts
report [IPCC, 2001b]. Giorgi et al. [1994a] showed that a
nested regional model produced a more realistic simulation
of precipitation over the United States than the driving
global model alone and also that the estimated changes in
climate were different: precipitation changes differed locally
in magnitude, sign, and spatial and seasonal details.

[6] Several studies have investigated the impacts of cli-
mate change on the hydrology of a watershed. Stone et al.
[2001] used RegCM [Giorgi et al., 1993] to assess the
impacts of climate change on water resources in the Missouri
River Basin. They found dramatic increase in water yield
(100% or more) for the northern region of the basin while the
southern region showed a decrease of up to 80%.

[7] In a follow-up study, Stone et al. [2003] examined the
impact of model resolution on water yield by using the
SWAT model on the Missouri River Basin for a 25-year
historical period and for GCM and RCM doubled CO,
scenarios used to modify the historical data. They found
that, compared to the historical climate, water yields were
significantly greater for the doubled CO, scenarios for both
GCM and RCM. They also found that yields produced by
SWAT from RCM results were significantly greater than
those simulated from GCM results and that there were
substantial differences in RCM- and GCM-induced water
yields across subbasins. They concluded that choice of
climate model resolution affects estimation of water yield
under climate change.

[8] Arnell et al. [2003] analyzed different ways of con-
structing climate change scenarios from a single climate
model and found that these different scenarios could lead to
differences in runoff of 10-20%. They use a regional
climate model as their primary downscaling method and
compare results with different downscaling techniques,
including simple interpolation of global-model results and
a time slice experiment. They also examine the relative
merits of using climate model data directly to assess impacts
of climate change versus applying a climate change signal
to an observed baseline climate. The reports of both Stone et
al. [2003] and Arnell et al. [2003] address uncertainties
relating to spatial scales of the scenarios, but our study goes
one step further to explicitly look at error in impacts
resulting from the RCM itself. The availability of reanalysis
data over a data-rich region such as the continental United
States allows comparison of impacts resulting from an RCM
driven by reanalyzed observations versus impacts derived
from observed surface data, thereby allowing RCM error to
be quantified.

[v] We have used 10-year simulations of contemporary
(current) and future scenario climates for the United States
to provide a physically consistent set of climate variables
for input to a watershed-scale simulation model. The
objective of this study was to explore streamflow, and
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model-introduced uncertainty thereof, in a future scenario
climate by introducing a regional climate model to dynam-
ically downscale global model results to create data required
by the streamflow model. The regional climate model is
driven by a global model or global reanalysis of observed
data to explore the accuracy of such a modeling system to
simulate current conditions and to explore the precision (not
accuracy) of the system for projecting streamflows consis-
tent with a future scenario climate. By its use of three sets of
10-year simulations of climate for the region, this study
provides a first step in exploring the potential impact on
streamflow of fine-scale dynamics such as the low-level jet
(as opposed to the role of orographically induced precipi-
tation) that are known to influence precipitation in this
region.

2. Models and Input Data
2.1. SWAT Model

[10] The SWAT model [Arnold et al., 1998] is a long-
term, continuous watershed simulation model. It operates on
a daily time step and is designed to assess the impact of
management on water, sediment, and agricultural chemical
yields. The model is physically based, computationally
efficient, and capable of simulating a high level of spatial
details by allowing the watershed to be divided into a large
number of subwatersheds. Major model components
include weather, hydrology, soil temperature, plant growth,
nutrients, pesticides, and land management. The model has
been validated for several watersheds [Rosenthal et al.,
1995; Arnold and Allen, 1996; Srinivasan et al., 1998;
Arnold et al., 1999; Saleh et al., 2000; Santhi et al., 2001].

[11] In SWAT, a watershed is divided into multiple sub-
watersheds, which are then further subdivided into unique
soil/land use characteristics called hydrologic response units
(HRUs). The water balance of each HRU in SWAT is
represented by four storage volumes: snow, soil profile (0—
2 m), shallow aquifer (typically 2—20 m), and deep aquifer
(>20 m). Flow generation, sediment yield, and non-point-
source loadings from each HRU in a subwatershed are
summed, and the resulting loads are routed through channels,
ponds, and/or reservoirs to the watershed outlet. Hydrologic
processes are based on the water balance equation:

!
SW,:SWO+Z(R_qurf_ET_P_QR>> (1)
i=1

where SW, is the final soil water content (mm), SW, is
the initial soil water content (mm), and R, Oy, ET, P,
and QR are the daily amounts (in mm) of precipitation,
runoff, evapotranspiration, percolation, and groundwater
flow on day i respectively. The soil profile is subdivided
into multiple layers that support soil water processes
including infiltration, evaporation, plant uptake, lateral
flow, and percolation to lower layers. The soil percolation
component of SWAT uses a storage routing technique to
simulate flow through each soil layer in the root zone.
Downward flow occurs when field capacity of a soil layer is
exceeded and the layer below is not saturated. Percolation
from the bottom of the soil profile recharges the shallow
aquifer. If temperature in a particular layer is 0°C or below,
no percolation is allowed from that layer. Lateral subsurface
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flow in the soil profile is calculated simultaneously with
percolation. Groundwater flow contribution to total stream-
flow is simulated by routing a shallow aquifer storage
component to the stream [Arnold et al., 1993].

[12] Surface runoff from daily rainfall is estimated with
the modified SCS curve number method, which estimates
the amount of runoff based on local land use, soil type, and
antecedent moisture condition. A provision for estimating
runoff from frozen soil is also included. Snow melts on days
when the daily maximum temperature exceeds 0°C. Melted
snow is treated the same as rainfall for estimating runoff and
percolation. Channel routing is simulated using the Musk-
ingum method. The model computes evaporation from soils
and plants separately. Potential evapotranspiration is mod-
eled with the Hargreaves method. Potential soil water
evaporation is estimated as a function of potential ET and
leaf area index (area of plant leaves relative to the soil
surface area). Actual soil evaporation is estimated by using
exponential functions of soil depth and water content. Plant
water evaporation is simulated as a linear function of
potential ET, leaf area index and root depth and can be
limited by soil water content. More detailed descriptions of
the model are given by Arnold et al. [1998].

2.2. UMRB Watershed

[13] The UMRB has a drainage area of 431,000 km? up to
the point just before confluence of the Missouri and Mis-
sissippi Rivers (Grafton, Illinois) and covers parts of seven
states: Minnesota, Wisconsin, South Dakota, Iowa, Illinois,
Missouri, and Indiana (Figure 1). Land cover in the basin is
diverse, including agricultural lands, forest, wetlands, lakes,
prairies, and urban area. The river system supports commer-
cial navigation, recreation, and a wide variety of ecosystems.
In addition, the region’s more than 30 million residents rely
on river water for public and industrial supplies, power plant
cooling, wastewater assimilation, and other uses.

[14] The UMRB is in the region unique to the United
States, where summertime mesoscale convective precipita-
tion [Wallace and Hobbs, 1977] is dependent on nocturnal
water vapor flux convergence [Anderson et al., 2003].
Neither the NNR [Higgins et al., 1997] nor global climate
models [Ghan et al., 1995] capture this essential mecha-
nism. Finer grid spacing is needed to resolve the fine-scale
dynamical processes that lead to timing, location, and
amounts of precipitation [Anderson et al., 2003]. Most,
but not all, regional models (including the one used herein)
are able to capture the nocturnal maximum in hourly
precipitation in this region [Anderson et al., 2003], which
is an indicator that nocturnal moisture convergence at the
outflow of the low-level jet is being simulated. For this
reason, we expect that use of a regional climate model will
improve on streamflow simulations driven by either reanal-
ysis or global climate models.

[15] The SWAT model requires a variety of detailed
information describing the watershed. Land use, soil and
topography data of the UMRB were obtained from the
Better Assessment Science Integrating Point and Nonpoint
Sources (BASINS) package version 3 [U.S. Environmental
Protection Agency (USEPA), 2001]. Land use categories
available from BASINS are relatively simplistic, providing
(for instance) only one category for agricultural use (defined
as “Agricultural Land-Generic”). Agricultural lands cover
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Figure 1. The Upper Mississippi River Basin (UMRB)
and delineated 8-digit HUCs.

almost 75% of the area. The soil data available in BASINS
come from the State Soil Geographic (STATSGO) database
[U.S. Department of Agriculture (USDA), 1994], which
contains soil maps at a 1:25,000 scale. The STATSGO
map unit is linked to the Soil Interpretations Record attribute
database that provides the proportionate extent of compo-
nent soils and soil layer physical properties (texture, bulk
density, available water capacity, saturated conductivity, soil
albedo, and organic carbon) for up to 10 layers. The
STATSGO soil map units and associated layer data were
used to characterize the simulated soils for the SWAT
analyses. Topographic information is provided in BASINS
in the form of digital elevation model (DEM) data. The DEM
data were used to generate stream networks using the Arc-
View interface of SWAT (called AVSWAT). On the basis of
the generated stream networks, 119 subwatersheds were then
delineated up to the point just before the confluence with the
Missouri River (see Figure 1). The delineated subwatersheds
follow the boundaries of the USGS defined 8-digit hydro-
logic unit codes (HUCs). The HRUs were then created
considering dominant soil/land use category within each
subwatershed; that is, each subwatershed was assumed to
be constituted with a single soil type and land use. The
management operations for each HRU were the default
values produced by AVSWAT. These management opera-
tions consist of planting, harvesting, and automatic fertilizer
applications for the agricultural lands. No attempt was made
to improve the management data because the main intent of
the present study was to assess the impacts of climate change
on hydrology, rather than on water quality of the region.

2.3. Climate Data

[16] SWAT requires daily precipitation, maximum/mini-
mum air temperature, solar radiation, wind speed and
relative humidity as meteorological input. In the absence
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of supplied observations, the weather generator within
SWAT uses its statistical database to generate representative
daily values for the missing variables for each subwa-
tershed. Ideally, at least 20 years of records are desired for
the weather generator database. Data not supplied from the
observations input file were generated internally by the
model’s weather generator. In this study we supplied daily
precipitation and daily maximum and minimum temperature
to SWAT either from observations or from the RCM. SWAT
defines precipitation to be snow based on the relation of
mean surface air temperature (determined from the daily
minimum and maximum as [(Tinax T Tmin)/2]) to a threshold
value established in calibration process.

[17] SWAT accepts one set of weather information for
each subwatershed. The SWAT modeling framework has
119 subwatersheds upstream of Grafton, Illinois, so the model
requires 119 sets of weather information to produce the
observations-driven simulations (e.g., output later referred
to as SWAT 1). If more than one observing station falls
within a subwatershed, SWAT chooses the one nearest
the subwatershed centroid. A few subwatersheds have no
observing station within their boundaries, so adjacent stations
are used to provide temperature and precipitation data used
by SWAT. For these reasons 99 of a possible 160 weather
stations within the UMRB were used in this analysis.

[18] We used four sets of climate data to drive SWAT as
shown in the left-hand column of boxes in Figure 2: one
observed data set from stations and three sets of RCM
simulated climate data. Observed data were extracted from
the U.S. COOP database (National Climatic Data Center
(NCDC), Cooperative Observer Program (COOP), http://
www.nws.noaa.gov/om/coop/Publications/, 2000), as com-
piled by the Variable Infiltration Capacity group (VIC,
http://www.ce.washington.edu/pub/HY DRO/edm/).

[19] The remaining three sets of climate data were gen-
erated using the regional climate model RegCM2 [Giorgi et
al., 1993]. The model simulation has a horizontal grid
spacing of 52 km [Pan et al., 2001], thereby providing
approximately 160 grid points within the UMRB. The
simulation domain centered at (100°W, 37.5°N) covers the
continental United States and includes a buffer zone near
the lateral boundaries (far from the UMRB) where the
global information was introduced. Lateral boundary data
were supplied for every model time step by interpolating
6-hourly data from the reanalysis and GCM. More details
on the domain and implementation of boundary conditions
for the regional model are described by Pan et al. [2001]
and Takle et al. [1999].

[20] The NCEP/NCAR reanalysis (NNR) dataset [Kalnay
etal., 1996] 1.875° x 1.875° grid over the entire globe was
downscaled onto RCM 52 x 52 km grids. NNR combined
all available observations for a 40-year period, including the
10-year period of the current study, with a dynamical model
to maximize internal physical consistency and is considered
to be most accurate in regions such as the UMRB where a
relatively dense network of observing stations has provided
the raw data. This downscaling simulation was used to
examine the RCM’s capability in producing observed cli-
mate for the specific period (1979—1988).

[21] The other two downscaling simulations are based on
the GCM climates (rather than the NNR). The results of the
GCM of the Hadley Centre (HadCM?2) [Jones et al., 1997]
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Source of climate Models Output
Observed station / N
climate (1979-88) > SWAT > SWAT 1
Reanalyzed (observed) -
climate (1979-88) RCM @ SWAT 2
Contemporary climate RCM SWAT 3
(~1990-99)
Future scenario
climate (~2040-2049) RCM @ SWAT 4

Figure 2. Schematic diagram of RCM/SWAT simulation
runs.

were used to provide the basic climate information for
assessing the impact of climate change and uncertainty in
this assessment. The HadCM2 [Jones et al., 1997] is a
coupled atmosphere-ocean model that uses a finite differ-
ence grid of 2.5° latitude by 3.75° longitude (about 300 km
in midlatitudes). Only three grid points fall within the
boundaries of the UMRB, which does not provide sufficient
spatial climate detail to capture within-basin heterogeneity
of atmospheric dynamical or hydrological processes. We
nested a fine grid resolution RCM (RegCM2) into the
coarse grid global model to dynamically downscale global
information over the continental United States. The GCM
contemporary climate represented by a 10-year window
corresponds roughly to 1990s, selected from the HadCM2
simulations without enhanced greenhouse gas (GHG) forc-
ing [Jones et al., 1997]. The future scenario climate is from
a transient simulation that assumed a 1% per year increase
in effective GHGs after 1990. Sulfate aerosol effects
(of secondary importance for this region) were not included
in the transient GHG simulations used in this paper. The
10-year window selected for the scenario climate corre-
sponds to 2040—-2049 with CO, about 480 ppm. A more
detailed description is given by Pan et al. [2001].

[22] Any climate-impacts study based on RCM results
will depend strongly on the particular GCM and particular
emissions scenario used to force the RCM for future
climate. We used the HadCM2 model, which has a transient
climate response of 1.7 (1.7°C global temperature rise at
time of CO, doubling) compared to a mean (standard
deviation) value of 1.8 (0.43) for the 19 models listed by
the IPCC [IPCC, 2001a]. The equilibrium sensitivity of
HadCM2 is 4.1 whereas the 17 models tabulated by the
IPCC have mean (standard deviation) of 3.4 (0.95). For
global precipitation change, HadCM2 produced slightly
above the mean of models plotted.

[23] Although our regional modeling procedure down-
scales global fields from outside the continental United
States and is therefore not dependent on HadCM2 results
within the UMRB, it is informative to compare HadCM2
results over UMRB with those of other global models. On a
regional basis, HadCM2 had lowest warming of 5 models
(3.8°C versus mean of 5.2°C) summarized by the IPCC
report for central North America for climate change be-
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tween 2071-2100 and 1961-1990. Global models are
highly inconsistent for precipitation amounts in the central
North America with means (standard deviations) of +9%
(6%) in winter and —9% (18%) in summer. HadCM2 gave
about +16% for both seasons.

[24] In summary, HadCM2 is quite near the center of the
range of climate sensitivities of global climate models, and
for the specific region of our study HadCM2 results are
somewhat wetter and slightly cooler than average for global
models reported by the /PCC [2001a].

3. Model Uncertainties and Experimental Design
3.1. Sources of Error

[25] This study is designed to evaluate both the projected
change in streamflow due to climate change and the
uncertainty or level of confidence in the results. Errors in
estimating impact of climate change on streamflow come
from (1) uncertainty in the assumption of future GHG
scenarios, (2) errors in the GCM that translates the GHG
emission into future scenario global climate, (3) errors in the
downscaling of global results to regional climate (in our
case, done by an RCM), (4) errors in SWAT, and (5) errors
arising from choices made in combining models (e.g., use of
evapotranspiration from the RCM or SWAT).

[26] For this study we have access to only one global
model run for one GHG scenario, so we are unable to assess
error 1. The GCM has errors in describing the current
climate, and hence presumably in the future climate for the
same (whatever) reasons. However, the GCM future scenario
climate also may have errors emerging from the changes in
GHG concentrations or their feedbacks that are not present in
simulations of the contemporary climate. We term the GCM
error for the contemporary climate as “error 2a” and the
additional error due to changes in GHGs as “error 2b.”” When
models are linked together, the error arising from the linkage
is likely not represented by a linear combination of individual
model errors. By using various combinations of input
conditions to the RCM and SWAT, we can calculate and
intercompare different end-product streamflows, thereby
gaining at least qualitative assessment of these combinational
errors. This builds on the method used by Pan et al. [2001] but
goes beyond the procedure used therein to include the impacts
model in addition to the climate models.

3.2. Experimental Design

[27] Figure 2 shows different SWAT runs with historical
and RCM generated climates. Results of the first SWAT
simulation (SWAT 1 in Figure 2) with the observed station
climate from 197988 are compared with measured stream-
flows at Grafton, Illinois, during that same period to
evaluate the capability of SWAT in representing observed
discharges in the UMRB. It is not possible to make an
unambiguous estimate of error introduced by the RCM, but
a good proxy for this is a comparison of SWAT results
produced when an RCM run driven by observed climate
interpolated to the RCM grid (NNR, 1979-1988) with
SWAT results produced by the observed climate (SWAT 1).
This procedure minimizes impact of errors in SWAT but
includes streamflow errors that may have originated in the
reanalysis used to create input to the RCM. The contribution
of NNR errors to this result is minimized by our choice of
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Table 1. Definition of Errors in Simulated Streamflows and
Climate Change

Comparisons Evaluate
SWAT 1 versus measured SWAT error
SWAT 2 versus SWAT 1 RCM error
SWAT 3 versus SWAT 2 GCM error

SWAT 3 versus SWAT 1
SWAT 2 versus measured
SWAT 3 versus measured

GCM-RCM error
RCM-SWAT error
GCM-RCM-SWAT error

SWAT 4 versus SWAT 3 climate change

lateral boundaries far from the UMRB and the fact that the
RCM incorporates surface boundary influences at a higher
spatial resolution than the NNR. Error 2a from the global
model is evaluated by comparing output of SWAT driven by
the RCM driven by the GCM for the contemporary climate
(SWAT 3) with output of SWAT driven by the RCM driven
by the reanalysis (SWAT 2). Daily maximum and minimum
temperatures from the HadCM2 were not available to be
used (along with daily precipitation) as input to SWAT,
thereby precluding a more direct evaluation of the added
value of the RCM.

[28] Errors arising within individual models may be
amplified or compensated for when models are used in
combination. Measured streamflow and various SWAT out-
puts can be combined in other ways to give additional insight
on errors arising from the combined models. Table 1 lists
various combinations that are available. The three individual
model errors and three model-combination errors provide a
backdrop for interpreting the change in streamflow due to
climate change as determined by comparing results of SWAT
driven by the RCM forced by the GCM results for the future
scenario climate (SWAT 4) with SWAT 3.

3.3. Error Assessment

[20] Ability of the hydrologic model and the climate
model to simulate water yield was evaluated by computing
bias and root mean square error (RMSE):

N

Bias :]i\f Z (Os, — Om,), (2)

i=1

1 N
RMSE = Jﬁ ;(QS, - Qm,)27 (3)

where Q,, and Qq are the measured and simulated streamflow
respectively, and N is number of years of streamflow data. The
bias provides a measure of systematic errors revealed from
comparing model results with measurements. The RMSE
gives an estimate of the variability of the model compared
with observations, which is used to assess the validity of the
model in reproducing the seasonal cycle (N = 12).

4. Results and Discussion
4.1. Model Validation

4.1.1. SWAT Calibration and Validation
[30] Measured streamflows during 1989—1997 at USGS
gauge station 05587450, Mississippi River near Grafton,
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Figure 3. Measured and simulated annual streamflows at
USGS gauge 05587450, Mississippi River near Grafton,
Illinois, for calibration.

Illinois, were used to calibrate SWAT. The criterion used for
calibrating the model was to minimize the difference
between measured and simulated streamflow at the water-
shed outlet. No attempt was made to calibrate base flow and
surface runoff independent of total streamflow, since only
total flow data were available. The flow-related model
parameters such as runoff curve number (CN), soil evapo-
ration compensation factor (ESCO), plant uptake compen-
sation factor (EPCO), re-evaporation coefficient (REVAP),
groundwater delay, and rain/snow temperature threshold
were adjusted from the model initial estimates defaulted
by AVSWAT to fit simulated flows to the observed ones.
Detailed explanation of calibrated parameters can be found
in the SWAT theoretical documentation, which is available
online at http://www.brc.tamus.edu/swat. Comparison of
annual flow (Figure 3) and time series (Figure 4) of monthly
streamflow at the watershed outlet shows that the magnitude
and trend in the simulated streamflows agreed with mea-
sured data quite well. Model performance was evaluated by
the coefficient of determination (R*) and Nash-Sutcliffe
simulation efficiency (E) [Nash and Sutcliffe, 1970]. If R?
and E values are less than or very close to zero, the model
simulation is considered unacceptable. If the values ap-
proach one, the model simulations would be perfect. Sta-
tistical evaluation for annual simulation yielded an R* value
of 0.91 and E value of 0.91, indicating a reasonable
agreement between the measured and simulated flows. For
monthly simulations we calculated an R value of 0.75 and
E value of 0.67.

[31] Flow validation was conducted using the streamflow
data for the period from 1980 to 1988. Simulated stream-
flow for this period provides the output labeled SWAT 1 in
Figure 2. During the validation process, the model was run
with input parameters calibrated earlier without any change.
Measured and simulated annual (Figure 5) and monthly

120

—— Measured Simulated |

100

80
60
40
20

Monthly stream flow (mm)

0 1989 1990 1991 1992 1993 1994 1995 1996 1997

Figure 4. Time series of measured and simulated monthly
streamflows at USGS gauge 05587450, Mississippi River
near Grafton, Illinois, for calibration.
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Figure 5. Same as Figure 3, but for validation.

(Figure 6) streamflow show a good agreement between
simulated streamflows and the measured values. Annual
simulations yielded an R? value of 0.89 and E value of 0.86,
while an R? value of 0.70 and E value of 0.59 were obtained
for monthly simulations. Overall, the model was able to
simulate streamflow with a reasonable accuracy. Other
SWAT application papers considered the R* values of more
than 0.7 and E values of more than 0.5 as sufficient
conditions for model validation on a watershed scale
[Srinivasan et al., 1998; Santhi et al., 2001].

4.1.2. Hydrological Components of SWAT

and RegCM2

[32] RegCM2 has its own surface hydrology package but
lacks a streamflow routing process, as contained in SWAT,
that is an essential ingredient of this study. It is, however,
informative to compare the hydrological components of
RegCM2 and SWAT to shed light on whether uncertainty
introduced by the RCM-SWAT combination might be
attributable to discrepancies between these components.
The key hydrological components are evapotranspiration,
runoff, and snowmelt. Recall that precipitation is identical
for both the models. The 10-year annual means of these
components differ by only 6—10% between the two models
(Table 2), which is perhaps surprising, given large differ-
ences in formulations of models’ hydrology.

[33] Both RegCM2 and SWAT captured the seasonal
trend of runoff that peaks in April. The SWAT-simulated
peak is slightly earlier than that of RegCM2 (Figure 7b).
The annual mean runoff values simulated by SWAT and
RegCM2 are 12.6 mm and 13.8, respectively, within 10%
agreement.

[34] Runoff is largely controlled by precipitation minus
evapotranspiration (P — ET). Although P is common to both
models, ET can be different. RegCM?2 simulated about 15%
more ET than SWAT in June and July (Figure 7c), possibly
associated with positive feedback between precipitation and
evapotranspiration in RegCM2 that is not simulated in
SWAT.
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Figure 6. Same as Figure 4, but for validation.
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Table 2. Hydrological Component Comparison Between
RegCM2 and SWAT?

RegCM2 SWAT
Evapotranspiration 588 528
Surface runoff 151 166
Snowmelt 256 240

?All values are in millimeters per year averaged for 1980—1988 in NNR
run.

[35] RegCM2 produces a smooth curve of snowmelt that
monotonically increases from a small value in October to a
maximum in March and then drops to near zero in May
(Figure 7d). In contrast, SWAT produces a November
secondary maximum followed by a slight decrease through
February before increasing to a March primary maximum
and then decreasing to essentially zero in May. In
RegCM2 the snow/rain threshold is established to be when
the surface air temperature is 2.2°C. The value is 2.2
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Figure 7. Comparison of hydrological components be-
tween RegCM2 and SWAT: (a) snowfall, (b) runoff,
(c) evapotranspiration, and (d) snowmelt. All values are
averaged for 1980—1988 for the NNR runs.
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Figure 8. Annual streamflows produced by SWAT driven
by the RCM with NNR lateral boundary conditions,
compared with measured streamflows at USGS gauge
05587450, Mississippi River near Grafton, Illinois.

instead of zero because the precipitation temperature is
typically lower than that of surface air. In RegCM2, the
surface temperature is updated every time step, so a rain/
snow decision is made every time step. SWAT, by contrast,
defines the daily total precipitation to be snow if the mean
surface air temperature (determined from the daily mini-
mum and maximum as [(Tnax + Tmin)/2]) is equal to or
below the rain/snow threshold temperature, determined in
the calibration process to be 2.0°C. Despite of the differ-
ence in threshold values and the RCM time step versus
SWAT daily partitioning, the resultant snowfall is very
similar for the two models in all months except April and
May when RegCM2 produces, respectively, 15 and 5 mm
more snow water equivalent than SWAT (Figure 7a).
Annual totals agree to within 5%.
4.1.3. Combining SWAT With the RCM

[36] The calibrated SWAT model was run with weather
inputs (precipitation and temperature) generated from the
RCM model for the period 19791988 (labeled as NNR).
The output is labeled as “SWAT 2” in Figure 2. The annual
simulation matched well with the measured data, as shown
in Figure 8. It is noteworthy that the year having the largest
error was 1988, a year of extreme drought in the central
United States. Statistical evaluation revealed that the model
was able to explain at least 77% of the variability in the
measured streamflow (R> = 0.77), showing a reasonably
good agreement between measured and simulated stream-
flows.

[37] Streamflow is an integrator of climate processes,
both spatially and temporally. Since there is essentially no
change in in-basin storage from year to year, what goes
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Figure 9. Comparison of measured mean monthly stream-
flows and those produced by SWAT driven by the RCM
downscaled NNR data for the validation period (1980—
1988).
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Figure 10. Same as Figure 8, but for precipitation.

in as precipitation must come out at streamflow. The
RCM gives a very good estimate of mean annual precip-
itation (Figure 10) and interannual variability of annual
streamflow (Figure 8) over the basin. However, on sub-
annual timescales, errors in the regional model, in addi-
tion to errors in routing and timing of snowmelt, can
introduce errors in streamflow that put additional limita-
tions on this method for impacts assessment on such
timescales. This shortcoming at shorter timescales and
their compensating tendency for the annual total provides
a measure of caution for interpreting the errors in annual
estimates.

[38] Mearns et al. [1997] examine the impact of changes
in both mean and variance of climate on output of a crop
model and demonstrated the importance of including vari-
ability. A more in-depth study using the Mearns et al.
[1997] procedure is needed to investigate the extent to
which the integrating nature of streamflow would suppress
the importance of short-term variability in climate.

[39] Errors in simulating monthly streamflow are shown
in Figure 9. In spring, streamflow is very sensitive to
surface and subsurface temperatures and to whether
precipitation falls as rain or snow, this latter feature also
being a sensitive function of temperature near the ground.
In a comparison of RegCM2 climate variables with
observations for three snowfall-dominated basins, Hay et
al. [2002] found that model errors in temperature were
more detrimental than errors in precipitation in assessing
time-integrated runoff. RegCM2 has a warm bias for
winter daily minimum temperatures, which likely is
contributing to excessive early spring runoff and ampli-
fication of the seasonal cycle (Figure 9). Seasonal distri-
bution of precipitation shown in Figure 10 suggests that
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excesses in model-generated precipitation in winter also
contributed to the excess spring streamflow. Similarly,
lower estimated precipitation in summer months likely
contributed, along with excessive early season runoff
previously mentioned, to the low streamflow simulated
for August through November. This is also evident in the
analysis of hydrological budget components discussed in
a later section of this paper.

[40] Giorgi et al. [1994b] analyzed the surface hydrology
of a multi-year simulation of the climate over the United
States with an RCM (RegCM) nested within a GCM and
compared results with available observations. For the Mis-
sissippi River Basin, they found that the model under-
predicted precipitation, evaporation and surface runoff,
and over-predicted the temperature on an average annual
basis. When the RCM-produced precipitation and temper-
ature were used herein to drive SWAT for the UMRB
simulation, a similar underprediction was observed for
evaporation, but surface runoff was reproduced very well
(by SWAT rather than the RCM) on an average annual basis
(see Table 3). By introducing SWAT for the hydrologic
components we were able to compare our results against
measured streamflow rather than runoff as was done by
Giorgi et al. [1994b]. The combined modeling system
simulated the hydrology very well on an annual basis,
probably because of more accurate representation of topog-
raphy, land use, and soil characteristics.

4.2. Climate Change Impact Assessment

[41] The impact of climate change on hydrology was
quantified by driving the calibrated SWAT model with
RCM generated weather corresponding to the contemporary
(labeled as CTL) and future scenario (labeled as SNR)
climates nested in the global model as denoted by SWAT 3
and SWAT 4, respectively, in Figure 2. The analysis was
performed on a monthly basis for streamflows and annual
basis for hydrological budget components.

[42] Comparison of precipitation generated for contem-
porary and future scenario climates (Figure 11) suggests
higher average values of monthly flows throughout the
year in the future scenario, except for November, which
has 2% lower than the current precipitation. Projected
increases in precipitation for this region are consistent
with trends over the last decades of the twentieth century
[/PCC, 2001a]. The mean annual precipitation is pro-
jected to increase by 21%.

Table 3. Simulated Hydrologic Budget Components by SWAT Under Different Climates®

Hydrologic Budget Calibration Validation NNR CTL SNR Percent Change
Components (1989-1997) (1980—-1988) (1980—-1988) (Around 1990s) (Around 2040s) (SNR-CTL)
Precipitation 856 846 831 898 1082 21
Snowfall 169 103 237 249 294 18
Snowmelt 168 99 230 245 291 19
Surface runoff 151 128 151 178 268 51
GW recharge 154 160 134 179 255 43
Total water yield 273 257 253 321 481 50
Potential ET 947 977 799 787 778 —1
Actual ET 547 541 528 539 566 5

#All units are in millimeters; precipitation values for NNR, CTL, and SNR are the outputs of the RCM model, and precipitation values for calibration and
validation periods are from weather stations; other components are estimated by SWAT; total water yield is the sum of surface runoff, lateral flow, and

groundwater flow.
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Figure 11. Precipitation generated by the RCM for
contemporary and future scenario climates.

[43] Climate-induced streamflow changes are inferred by
evaluating differences produced by SWAT when driven by
future scenario and contemporary climates. Annual aver-
age streamflow increased by 50% because of climate
change (Figure 12), with the largest increase occurring in
spring and summer. This disproportionate change, i.e.,
50% increase in average annual streamflow versus 21%
increase in average annual precipitation, can be attributed
to more precipitation falling on saturated soils, which
creates disproportionately large runoff. For instance, for
a rain event producing, say, 10 cm of precipitation, the last
several cm likely contribute completely to runoff and
immediately to streamflow rather than soil infiltration that
delays contribution to streamflows.

[44] Simulated hydrologic budget components under
different sources of climate data (Table 3) provide insight
into major sources of uncertainty in this combined-model
study. Precipitation, being the primary input to the hydro-
logical system, ranges from 831 to 898 mm per year (a
variation of 8%) for the various contemporary climates
(e.g., all columns except SNR). This remarkable consis-
tency, however, masks RCM problems with monthly
distributions as previously discussed. Other components
except actual ET are far less consistent among the various
contemporary climates, which suggests substantial interde-
cadal variability in the climate for these components, e.g.,
snowfall and snowmelt, in calibration versus validation
decades, and/or model-generated differences, e.g., differ-
ences between validation and NNR columns. Largest
variations were found in snowfall and related snowmelt
and potential evapotranspiration estimation. These can be
attributed, in part, to the error in seasonal precipitation
simulation by the RCM (Figure 10).

[45] Despite large variations in budget components,
annual simulations of total water yield are quite similar,
especially between observed (validation period) and NNR
conditions. Proportionate but higher values of budget
components were found for CTL compared to NNR
simulation runs, although they represent similar time
domains, suggesting the GCM is biased toward high
precipitation and a more intense hydrological cycle. This
consistent bias among hydrological components can be
expected in both GCM contemporary and future scenario
climates.

[46] With the 21% increase in precipitation and accom-
panying changes in temperatures for the future scenario
climate as simulated by the RCM, SWAT produced an
18% increase in snowfall, a 19% increase in snowmelt, a

D09105

51% increase in surface runoff, and a 43% increase in
recharge, leading to a 50% net increase in total water yield
in the UMRB. Uncertainties in these projections are
analyzed by the plan mapped out in Figure 2.

4.3. Uncertainties in Climate Change Impact
Assessment

[47] Table 4 lists the absolute and relative bias and RMSE
for all sources of errors in simulations of water yield of the
Mississippi River at Grafton, Illinois. The highest percent-
age bias (18%) was found for GCM downscaling error.
However, the highest individual model RMSE (14.3 mm)
was found in RCM performance. RCM model simulation
error was low on the annual basis (Figure 8), but high for
seasonal values (Figure 9).

[48] The magnitude of the climate change can be con-
sidered a “‘signal” that we can compare to uncertainties
arising from the various components of the modeling
system, which can be considered “noise.” A high sig-
nal-to-noise ratio is a necessary (but not sufficient) condi-
tion for high confidence in using this modeling approach
to accurately project future streamflows in the UMRB. As
shown in Figure 13, change in streamflow (50%) due to
climate change exceeds both individual model biases and
also the combined-model bias, thereby providing a high
signal-to-noise ratio. This result does not by itself ensure
accuracy of the projection of future streamflow (i.e., does
not provide the sufficient condition); however, if future
global climate models are judged to be able to produce
accurate future scenario climates with high confidence,
then the combined-modeling procedure we have described
provides a means of assessing confidence in the resulting
streamflow.

[49] Annual streamflow tends to have a quasi-linear
relationship with annual precipitation. We used regression
analysis to evaluate this relationship (Figure 14) for the
five options depicted in Figure 2. Table 5 lists the
5 regressions with their slope values. The regression line
plotted represents measured annual streamflow versus
observed annual precipitation for 1980 through 1997. We
applied the pooled t-test to the regression-line slopes for
the various sets of simulated results to determine whether
any of these climates have relationships between stream-
flow and precipitation that differ significantly (at the 5%
significance level) from observed. We found that the
slopes for SWAT1 and SWAT3 are not different from the
observed but that SWAT2 and SWAT4 are different from
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Figure 12. Mean monthly streamflow simulated by SWAT
for contemporary and future scenario climates.
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Table 4. Bias and RMSE in Various Simulations of Water Yield of the Mississippi River at Grafton,

Illinois*

Absolute and Relative Bias in
Average Monthly Simulation, mm

Modeling Error

RMSE in Average Monthly
Simulation, mm

SWAT +0.6 (3%) 55
RCM +0.3 (1%) 143
GCM +4.0 (18%) 72
GCM-RCM +4.3 (19%) 18.0
RCM-SWAT +1.0 % 4%) 11.1
GCM-RCM-SWAT +5.0 (23%) 14.5

“Refer to Table 1 for different modeling errors, to equation (2) for bias, and to equation (3) for RMSE.

the observed data and different from each other. This
means that SWAT produces the same relationship between
precipitation and streamflow as is observed and that SWAT
driven by a regional model used to downscale global
climate model results does also. However, more stream-
flow per unit of precipitation is produced when the NNR
drives the regional model. And the future scenario climate
as represented by the combined models has an even higher
ratio.

[s0] It is perhaps notable that the RCM/NNR results
show the lowest annual streamflow bias (Figure 13) but
the largest bias in the regression of annual streamflow with
annual precipitation for the current climate (items 1—4 in
Table 5). We suspect this might be further evidence of
RCM inadequacies in simulating accurately the annual
cycle of precipitation, although we have not done con-
firming experiments. Although the RCM produces an
accurate annual total precipitation (Figure 10), it produces
too much precipitation from November—May and less than
observed from June—October. Warm-season precipitation
contributes much more than cold-season precipitation to
moisture recycling. However, recycled moisture does not
contribute to streamflow (presuming it falls, evaporates,
and re-falls within the basin): recycling allows higher
annual precipitation for a given streamflow, and recycled
moisture will contribute a larger absolute amount to annual
precipitation in wet years. Therefore a model that is
deficient in moisture recycling during the year will have
a larger slope in the plot of annual streamflow versus
annual precipitation.

[s1] Then why is the RCM/CTL slope comparable to
that of the observations rather than that of the RCM/NNR
model, since the RCM presumably does not capture the
seasonal cycle for the contemporary climate? We suspect
the answer lies in the June—August rainfall totals, which
approximate the observed values for the contemporary
climate but are 18% low for the RCM/NNR climate
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Figure 13. Comparisons of climate change with annual
biases in simulated streamflow.

(Figures 10 and 11). These midsummer rains recharge
the region’s soils that are deep and have high moisture-
holding capacity. Crops in the region develop deep roots
by late summer and therefore efficiently contribute to
moisture recycling by drawing moisture from the deep-
soil reservoir that has been fully charged near the summer
solstice.

[52] The seasonal trend in precipitation in the GCM
future scenario climate (SNR) follows that in the CTL
climate but with higher magnitude in all months. The
regression slope calculated for the SNR climate was 1.16,
a factor of 2 more than those of the contemporary climates.
It should be noted that the slope greater than 1 does not
mean more runoff than precipitation, but simply reflects
larger portion of rainfall transported as runoff because of
high-intensity rainfall events in future climate [/PCC,
2001a].

5. Limitation of Coupled Modeling System

[53] Hydrological budget components provide an inter-
nally consistent view of the water cycling within a water-
shed. Each component should be calibrated and validated
against the measurements before being used to simulate
future climates. However, limited data availability does not
afford such luxury. Total water yield from the watershed
typically is available only in terms of streamflow. In this
study, only streamflow is calibrated and validated at the
watershed outlet since measurements of snowmelt, ground-
water flow and evapotranspiration are not available. The
resulting budget components, after the model is calibrated
for total water yield, are believed to be in the appropriate
range assuming that the model can simulate the process
realistically. Other reported studies show that SWAT is
capable of providing watershed-scale analysis and has been
validated on many small and large watersheds for total
water yield, evapotranspiration, and groundwater recharge
depending upon the data availability. Arnold and Allen
[1996] validated SWAT for all components of the water
balance including groundwater recharge for three river
basins in Illinois.

[54] In simulating the hydrologic cycle with RCM gen-
erated weather data, care should be taken to ensure that all
budget components are changing in a proportional way.
Known weaknesses in RCM simulation of snow water
equivalent and high sensitivity of snow melt to air temper-
atures led to large errors in monthly streamflow beginning
in spring. For these reasons we have low confidence in the
ability of this coupled-model system to represent month-to-
month streamflow.
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[s5] An additional limitation of this modeling procedure
is the climate database used by the weather generator
within SWAT. The statistical relationships used to find
meteorological conditions not supplied by the RCM may
be different in a future scenario climate from those used
for the current climate. No allowance has been made for
this potential difference in the present study. In principle,
this limitation could be circumvented by allowing SWAT
to ingest all the surface hydrological cycle information
from the RCM. However, SWAT has far more detail on
influences of land characteristics that would be lost in
such a strategy. Alternatively, the future scenario climate
of the RCM could be used to provide a more concurrent
future scenario statistical database for the SWAT weather
generator [Mearns et al., 1997]. This might be a more
suitable alternative, short of disassembling SWAT and
reassembling it within the RCM.

6. Summary and Conclusions

[s6] A regional climate model that generated two
10-year simulated climates for the continental United States
corresponding to current and future scenario climates at
50 km horizontal resolution was used to drive a hydrological
model, Soil and Water Assessment Tool (SWAT), over
the entire UMRB. The objective of the study was to explore
streamflow, and model-introduced uncertainty thereof, in a
future scenario climate by introducing a regional climate
model to dynamically downscale global model results to
create temperature and precipitation data required by the
streamflow model. Hydrologic components of the SWAT
model were calibrated and validated using measured stream-
flow data at USGS gauge 05587450, Mississippi River near
Grafton, Illinois. The model produced streamflow with
reasonable accuracy on annual and monthly bases. Com-
bined performance of SWAT and the RCM was first evalu-
ated by driving SWAT with NNR data used as the RCM’s
lateral boundary conditions. This combined model system
reproduced annual streamflow values well but failed to
capture seasonal variability. Impact of climate change was
then assessed by using two 10-year scenario periods (1990s
and 2040s) generated by nesting the RCM into a coarse grid
resolution global model (HadCM2). The combined GCM-
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annual precipitation for various climates.
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Table 5. Regression Analysis: Streamflow Versus Precipitation

Streamflow Versus Precipitation Scenario Slope
1 Measured streamflow versus observed observed 0.66
precipitation (1980—-1997)
2 Simulated streamflow versus observed SWAT 1 0.65
precipitation (1980—1988)
3 Simulated streamflow versus RCM/NNR SWAT 2 0.87
precipitation (1980—1988)
4 Simulated streamflow versus CTL SWAT 3 0.64
precipitation (around 1990s)
5 Simulated streamflow versus SNR SWAT 4 1.16

precipitation (around 2040s)

RCM-SWAT model system produced an increase in future
scenario climate precipitation of 21% with a resulting 18%
increase in snowfall, 51% increase in surface runoff, 43%
increase in recharge and 50% increase in total water yield in
the UMRB. This disproportionate change can be attributed
to more intense precipitation events in future climates and
the non-linear nature of hydrologic budget components, such
as snowmelt, evapotranspiration, surface runoff, and ground-
water flow.

[57] For the global climate model future scenario we used
we have shown that the climate change signal is large
relative to errors arising from the modeling procedure, with
the largest error being attributable to the GCM downscaling
error (18%), compared to a simulated change of 50% in
annual streamflow. This gives confidence that such a
downscaling procedure has value for impacts assessment
provided the quality of the global model driving the RCM is
high.

[s8] Our results also suggest that the relationship of
annual streamflow to annual precipitation may change in
a future climate in that a unit increase in precipitation
will cause a larger increase in streamflow. This may be
due to increased recycling of moisture more uniformly
from year to year in a future wetter climate. It also may
be attributable to more intense precipitation events asso-
ciated with mesoscale convective complexes that produce
a larger fraction of runoff because of a more full soil
profile in mid summer. It is known [Anderson et al.,
2003] that RCMs capture such mesoscale events more
accurately than global models, strengthening the case for
fine-scale resolution of the dynamics of the hydrological
system, even in regions of little orographic forcing of
precipitation, as being essential for driving hydrological
impacts models.
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